Prolific Codes with the Identifiable Parent Property

نویسندگان

  • Simon R. Blackburn
  • Tuvi Etzion
  • Siaw-Lynn Ng
چکیده

Let C be a code of length n over an alphabet of size q. A word d is a descendant of a pair of codewords x,y ∈ C if di ∈ {xi, yi} for 1 ≤ i ≤ n. A code C is an identifiable parent property (IPP) code if the following property holds. Whenever we are given C and a descendant d of a pair of codewords in C, it is possible to determine at least one of these codewords. The paper introduces the notion of a prolific IPP code. An IPP code is prolific if all qn words are descendants. It is shown that linear prolific IPP codes fall into three infinite (‘trivial’) families, together with a single sporadic example which is ternary of length 4. There are no known examples of prolific IPP codes which are not equivalent to a linear example: the paper shows that for most parameters there are no prolific IPP codes, leaving a relatively small number of parameters unsolved. In the process the paper obtains upper bounds on the size of a (not necessarily prolific) IPP code which are better than previously known bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes with the Identifiable Parent Property and the Multiple-Access Channel

I. The identifiable parent property and some first results about it If C is a q–ary code of length n and a and b are two codewords, then c is called a descendant of a and b if ct ∈ {at, bt} for t = 1, . . . , n. We are interested in codes C with the property that, given any descendant c, one can always identify at least one of the ‘parent’ codewords in C. We study bounds on F (n, q), the maxima...

متن کامل

On Codes with the Identifiable Parent Property

If C is a q-ary code of length n and a and b are two codewords, then c is called a descendant of a and b if ci 2 fai; big for i = 1; : : : ; n. We are interested in codes C with the property that, given any descendant c, one can always identify at least one of the `parent' codewords in C. We study bounds on F (n; q), the maximal cardinality of a code C with this property, which we call the iden...

متن کامل

Codes with the identifiable parent property for multimedia fingerprinting

Let C be a q-ary code of length n and size M , and C(i) = {c(i) | c = (c(1), c(2), . . . , c(n)) ∈ C} be the set of ith coordinates of C. The descendant code of a sub-code C ′ ⊆ C is defined to be C ′ (1) × C ′ (2) × · · · × C ′ (n). In this paper, we introduce a multimedia analogue of codes with the identifiable parent property (IPP), called multimedia IPP codes or t-MIPPC(n,M, q), so that giv...

متن کامل

On optimal codes with w-identifiable parent property

Let C be a q-ary code of length n and X ⊆ C, then d is called a descendant of X if di ∈ {xi : x ∈ X} for all 1 ≤ i ≤ n. C is said to be a w-identifiable parent property code (w-IPP code for short) if whenever d is a descendant of w (or fewer) codewords, one can always identify at least one of the parent codewords in C. In this paper, we give constructions for w-IPP codes of length w + 1. Furthe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007